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Abstract - High utility itemsets refer to the sets of items with 
high utility like profit in a database, and efficient mining of 
high utility itemsets plays an important role in many real life 
applications and is an important research issue in data mining 
area. In recent years, the problems of high utility pattern 
mining become one of the most important research areas in 
data mining. The existing high utility mining algorithm 
generates large number of candidate itemsets, which takes 
much time to find utility value of all candidate itemsets. 
In this paper we are implementing a data structure that stores 
the utility related to the item and using this data structure we 
are reducing time and space complexity of UP Growth and UP 
Growth+ Algorithms. Various Standard and synthetic 
datasets are used with Educational feedback data set. An 
algorithm is proposed to find set of high utility itemset which 
avoids the candidate itemsets generation.

Keywords- Utility, Utility Information Record, Effective High 
Utility Itemset Mining. 

I. INTRODUCTION 
Rapid development in database techniques 

facilitates storage and usage of data from large database 
and also to mine the same. How to obtain valuable 
information from database is a more crucial task today 
which results in a rise of research topics [1]. 

Mining frequent itemset [2] from the database DB 
is to find out set of itemset that occurs frequently. The 
frequency of itemset is the support count related to that 
itemset i.e. number of transactions containing that itemset. 
If the support of the itemset exceeds the minimum support 
threshold value then itemset is frequent.  

Mining frequent itemset on takes presence and 
absence of itemset into account, other relative information 
related to the item is not considered. This results in the 
research area of finding out high utility itemset from 
database. Utility is one of the important features of itemset 
in transaction that specifies a utility/profit of itemset with 
frequency [6].   

Table 1: External Utility table 

Table 2 : Internal Utility Example 

TID Transaction Quantity TU

T1 {A,C,D,} {1,10,1} 17

T2 {A,C,E,G} {2,6,2,5} 27

T3 {A,B,D,E,F} {2,2,6,2,1} 37

T4 {B,C,D,E} {4,13,3,1} 30

T5 {B,C,E,G} { 2,4,1,2} 13

T6 {A,B,C,D,H} {1,1,1,1,2} 12

Recently, a number of high utility itemset mining 
algorithms [3] have been proposed. Most of the algorithms 
adopt a similar framework: firstly, generate candidate high 
utility itemsets from a database secondly, compute the 
exact utilities of the candidates by scanning the database to 
identify high utility itemsets [7]. However, the algorithms 
often generate a very large number of candidate itemsets 
and thus are confronted with two problems:  
(1) Excessive memory requirement for storing candidate 

itemsets.  
(2) A large amount of running time for generating 

candidates and computing their exact utilities. 
When the number of candidates is so large that they 

cannot be stored in memory, the algorithms will fail or their 
performance will be degraded due to thrashing. To solve 
these problems, we propose in this paper an algorithm for 
high utility itemset mining [6]. 
The contributions of the paper are as follows: 
1. A novel structure, called effective information list, is

proposed. effective information list stores not only the
utility information about an itemset but also the
heuristic information about whether the itemset
should be pruned or not.

2. An efficient algorithm, called Efficient High Utility
Itemset Mining (EHUIM) Algorithm, is developed.
Different from previous algorithms, EHUIM
Algorithm does not generate candidate high utility
itemsets. After constructing the initial utility-record
from a mined database, EHUIM Algorithm, can mine
high utility itemsets from these utility-record. We are
using various standard and real data sets [4].

Item A B C D E F G H 
Profit 5 2 1 2 3 5 1 1 
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II. BACKGROUND 
A. Problem Definition 

Let I={i1, i2, i3, . . . , in} be a set of items and DB 
be a database composed of a utility table and a transaction 
table. Each item in I has a utility value in the utility table. 
Each transaction T in the transaction table has a unique 
identifier(tid) and is a subset of I, in which each item is 
associated with a count value. An itemset is a subset of I 
and is called a k-itemset if it contains k items. 

 
Definition 1. The external utility of item i, denoted as 

ext_util(i), is the utility value of i in the utility table 
of DB. 

 
Definition 2. The internal utility of item i in transaction T, 

denoted as int_util(i, T), is the count value 
associated with i in T in the transaction table of DB. 

 
Definition 3. The utility of item i in transaction T, denoted 

as util(i, T), is the product of int_util(i, T) and 
ext_util(i), where util(i, T) = int_util(i, T) × 
ext_util(i). 
For example, in Table 2 and 3, ext_util(e) = 3, 
int_util(e, T5) = 1, and util(e,T5)= int_util(e, T5) × 
ext_util(e) = 1 x 3 =3. 

 
Definition 4. The utility of itemset X in transaction T, 

denoted as util(X, T), is the sum of the utilities of all 
the items in X in T in which X is contained, where 

u(X, T) =   

 
Definition 5. The utility of itemset X, denoted as u(X),is the 

sum of the utilities of X in all the transactions 
containing X in DB, where u(X) = 

 

For example, in Table 2, u({ae}, T2) = u(a, T2) + 
u(e, T2)= 2 × 5 + 2 × 3 = 16, and u({ae}) = u({ae}, 
T2) + u({ae},T5) = 16 + 14 = 30. 

 
Definition 6. The utility of transaction T, denoted as tu(T), 

is the sum of the utilities of all the items in T, where  

tu(T) = , 

and the total utility of DB is the sum of the utilities 
of all the transactions in DB. 

 
B. Related Work 

Many algorithms have been proposed for high utility 
itemset mining but all they first produce candidate itemset 
which require more time and space. Here in this algorithm 
a search space from the UP Growth algorithm [5] is 
minimized. A effective information list structure is used 
instead of UP Tree.     
 

III. PROPOSED METHOD 
 The framework of the proposed method consist of 
following steps: 1) Scan database to construct  Effective 
Information List. 2) Apply EHUI mining algorithm. 3) 
Generate High Utility Itemsets.  

A. Effective Information List Structure 
In the section, we propose a utility information 

record structure to maintain the utility information about a 
database [7]. 
1) Initial Effective Information List 

Initial Effective Information List storing the utility 
information about a mined database can be constructed by 
two scans of the database. Firstly, the transaction-weighted 
utilities of all items are accumulated by a database scan. If 
the transaction-weighted utility of an item is less than a 
given minutil, the item is no longer considered. For the 
items whose transaction-weighted utilities exceed the 
minutil, they are sorted in transaction-weighted-utility-
ascending order.  
2) Effective Information List of 2-Itemsets 

No need for database scan, the utility information 
record of 2-itemset{xy} can be constructed by the 
intersection of the utility list of {x} and that of {y}. The 
algorithm identifies common transactions by comparing the 
tids in the two effective information list. Suppose the 
lengths of the effective information lists are p and q 
respectively, and then (p + q) comparisons at most are 
enough for identifying common transactions, because all 
tids in a effective information list are ordered. The 
identification process is actually a 2-way comparison.  

3) Effective Information List of k-Itemsets (k≥3) 
To construct the effective information list of k-

itemset {i1 · · · i(k−1)ik}(k≥3), we can directly intersect the 
utility-list of{i1 · · · i(k−2)i(k−1)}and that of {i1 · · · i(k−2)ik} as 
we do to construct the utility-list of a 2-itemset. 

 
B. EHUIM Algorithm  

After constructing a Utility information record a 
EHUIM Algorithm can mine all high utility itemset from 
database. 
1) Domain Space: 

The domain space of the high utility itemset 
mining problem can be represented as a combination tree. 
Given a set of items I = {i1, i2, i3, . . . in} and a total order on 
all items (suppose i1 < i2 < · · · < in), a combination tree 
representing all itemsets can be constructed as follows. 

Firstly, the root of the tree is created; secondly, 
then child nodes of the root representing n 1-itemsets are 
created, respectively; thirdly, for a node representing 
itemset{is · · · ie} (1 ≤ s ≤ e < n), the (n−e) child nodes of 
the node representing itemsets {is · · · iei(e+1) },{is · · · 
iei(e+2)}, ...,{is · · · iein} are created. The third step is done 
repeatedly until all leaf nodes are created. For example, 
given I = {e,c, b, a, d} and e < c < b < a < d, a combination 
tree representing all itemsets of I is depicted in Figure 1. 
2) pruning Strategy: 

For a database with n items, exhaustive search has to 
check 2n itemsets. To reduce the search space, we can 
exploit the iutils and rutils in the utility-list of an itemset. 
The sum of all the iutils in the utility-list of an itemset is 
the utility of the itemset according to Definition 5, and thus 
the itemset is high utility if the sum exceeds a given 
minutil. The sum of all the iutils and rutils in the utility-list 
provides EHUIM Algorithm with the key information 
about whether the itemset should be pruned or not. 
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Lemma 1. Given the utility information record of itemset X, if the sum of all the iutils and rutils in the utility information 
record is less than a given "minutil", any extension X' of X is not high utility. 

Figure 1: Combination Tree 
 
 
Algorithm 1: Build - Combination Algorithm 
 
Input: P.EIL, the effective information list of itemset P; 
Px.EIL, the effective information list of itemset Px; 
Py.EIL, the effective information list of itemset Py. 
Output: Pxy.EIL, the effective information list of itemset 
Pxy. 
1. Pxy.EIL = NULL; 
2. for each element Ex ∈Px.EIL do 
3. if ∃Ey∈Py.EIL and Ex.tid==Ey.tid then 
4. if P.EIL is not empty then 
5. search such element E∈P.EIL that 

E.tid==Ex.tid; 
6. Exy=<Ex.tid, Ex.iutil+Ey.iutil -E.iutil, 

Ey.rutil>; 
7. Else 
8.  Exy=<Ex.tid, Ex.iutil+Ey.iutil, Ey.rutil>; 
9. end if 

10. append Exy to Pxy.EIL; 
11. end if 
12.  end for 
13.  return Pxy.EIL; 
 
 

3) EHUI Mining Algorithm: 
Algorithm 2 shows the pseudo-code of EHUIM 

Algorithm. For each effective information list X in ULs 
(the second parameter), if the sum of all the iutils in X 
exceeds minutil, and then the extension associated with X 
is high utility and outputted. According to Lemma 1, only 
when the sum of all the iutils and rutilsin X exceeds minutil 
should it be processed further. When the initial utility-lists 
are constructed from a database, they are sorted and 
processed in transaction-weighted utility-ascending order. 
Therefore, all the utility information records in EILs are 
ordered as the initial utility information record are. To 
explore the search space, the algorithm intersects X and 
each effective information list Y after X in EILs. Suppose 
X is the effective information list of itemset Px and Y that 
of itemset Py, and then Build(P.EIL, X, Y ) in line 8 is to 
construct the effective information list of itemset Pxy as 
stated in Algorithm 1. Finally, the set of effective 
information lists of all the 1-extensions of itemset Px is 
recursively processed. Given a database and a minutil, after 
the initial utility information record EILs are constructed, 
EHUIM(∅, EILs, minutil) can mine all high utility itemsets. 
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Algorithm 2: EHUI Mining Algorithm 
 
Input:P.EIL, the effective information list of itemset P, 
initially empty; EILs, the set of utility-lists of all P’s 1-
extensions; 
minutil, the minimum utility threshold. 
Output: all the high utility itemsets with P as prefix. 
1. for each effective information list X in EILs do 
2. if SUM(X.iutils)≥minutil then 
3. output the extension associated with X; 
4.  end if 
5. if SUM(X.iutils)+SUM(X.rutils)≥minutil 

then 
6. exEILs = NULL; 
7. for each effective information list Y after X in EILs do 
8.  exEILs = exEILs+Build(P.EIL, X, Y ); 
9. end for 

10. EHUI(X, exEILs, minutil); 
11. end if 
12. end for 

 
 

IV. EXPERIMENTAL EVALUATION 
Performance of proposed algorithm is evaluated in this 

section. The experiments were performed on 2.20 GHz 
Core2 Duo Processor with 3GB memory. The operating 
system is Windows 7. The algorithms are implemented in 
Java language. Both real and standard datasets are used in 
this experiment. Standard data sets are obtained from FIMI 
Repository. Real datasets were generated from the actual 
values. Parameter descriptions and default values of 
datasets are shown in Table no 3. Educational dataset  for 
evaluation of feedback report of faculty member is used as 
a real dataset.  

 
Table 3: Statistics about Databases 

Dataset Educational Dataset 

Size 26kb 

Transactions 500 

Items 10 

Avg Length 10 

 
 

A. Performance comparison on Educational                    
Feedback data sets 
 

Running Time 
For almost all databases and minutils, EHUI performs 

the best. In Figure 3, EHUI is even an order of magnitude 
faster than UPGrowth and UPGrowth+. For the Educational 
Feedback Dataset, when minutils are 50%, 60%, and 70%, 
the running time required for EHUI are 40mSec. So 
running time for EHUI is always less compare to UP 
Growth and UP Growth+ Algorithms.    
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Figure 3: Time for Educational Feedback Dataset  

 
Memory Consumption 

Generally, the memory consumption of the 
algorithms is proportional to the number of candidate 
itemsets they generate. For example, for database Chess, 
UP Growth generates 623, UP Growth+  generates 551 and 
that of IHUP generates 30 candidate itemsets and consumes 
17.60MB, 21.81MB, and 16.02MB of memory 
respectively[6]. Similar case is there for Educational 
Feedback Dataset. EHUI require near about similar space 
compare to UPGrowth and in some cases of UPGrowth+ 
algorithm.  
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Figure 6: Memory Space for Educational Feedback Dataset  

Itemsets Found 
Higher the number of candidate itemsets in a 

algorithm, lower is the performance. EHUI mining generate 
similar number of itemsets compare to  UPGrowth and 
UPGrowth+.  
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V. CONCLUSION 
 In this paper, we have proposed a novel data 
structure, effective information list, and developed an 
efficient algorithm, EHUI, for high utility itemset mining. 
Effective information list provide not only utility 
information about itemsets but also important pruning 
information for EHUI. We have used Educational real time 
and standard datasets. Previous algorithms have to process 
a very large number of candidate itemsets during their 
mining processes. However, most candidate itemsets are 
not high utility and are discarded finally. EHUI Algorithm 
can mine high utility itemsets without candidate generation, 
so that complexity of UPGrowth and UPGrowth+ is 
reduced as it require less time and space, which avoids the 
costly generation and utility computation of candidates. 
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