
Efficient High Utility Itemset Mining using
extended UP Growth on Educational Feedback

Dataset
Yamini P. Jawale1, Prof. Nilesh Vani2

1Reasearch Scholar,
Godawari College of Engineering,Jalgaon.

2Research Guide, Department of Computer Engineering,
Godawari College of Engineering,Jalgaon.

Abstract - High utility itemsets refer to the sets of items with
high utility like profit in a database, and efficient mining of
high utility itemsets plays an important role in many real life
applications and is an important research issue in data mining
area. In recent years, the problems of high utility pattern
mining become one of the most important research areas in
data mining. The existing high utility mining algorithm
generates large number of candidate itemsets, which takes
much time to find utility value of all candidate itemsets.
In this paper we are implementing a data structure that stores
the utility related to the item and using this data structure we
are reducing time and space complexity of UP Growth and UP
Growth+ Algorithms. Various Standard and synthetic
datasets are used with Educational feedback data set. An
algorithm is proposed to find set of high utility itemset which
avoids the candidate itemsets generation.

Keywords- Utility, Utility Information Record, Effective High
Utility Itemset Mining.

I. INTRODUCTION
Rapid development in database techniques

facilitates storage and usage of data from large database
and also to mine the same. How to obtain valuable
information from database is a more crucial task today
which results in a rise of research topics [1].

Mining frequent itemset [2] from the database DB
is to find out set of itemset that occurs frequently. The
frequency of itemset is the support count related to that
itemset i.e. number of transactions containing that itemset.
If the support of the itemset exceeds the minimum support
threshold value then itemset is frequent.

Mining frequent itemset on takes presence and
absence of itemset into account, other relative information
related to the item is not considered. This results in the
research area of finding out high utility itemset from
database. Utility is one of the important features of itemset
in transaction that specifies a utility/profit of itemset with
frequency [6].

Table 1: External Utility table

Table 2 : Internal Utility Example

TID Transaction Quantity TU

T1 {A,C,D,} {1,10,1} 17

T2 {A,C,E,G} {2,6,2,5} 27

T3 {A,B,D,E,F} {2,2,6,2,1} 37

T4 {B,C,D,E} {4,13,3,1} 30

T5 {B,C,E,G} { 2,4,1,2} 13

T6 {A,B,C,D,H} {1,1,1,1,2} 12

Recently, a number of high utility itemset mining
algorithms [3] have been proposed. Most of the algorithms
adopt a similar framework: firstly, generate candidate high
utility itemsets from a database secondly, compute the
exact utilities of the candidates by scanning the database to
identify high utility itemsets [7]. However, the algorithms
often generate a very large number of candidate itemsets
and thus are confronted with two problems:
(1) Excessive memory requirement for storing candidate

itemsets.
(2) A large amount of running time for generating

candidates and computing their exact utilities.
When the number of candidates is so large that they

cannot be stored in memory, the algorithms will fail or their
performance will be degraded due to thrashing. To solve
these problems, we propose in this paper an algorithm for
high utility itemset mining [6].
The contributions of the paper are as follows:
1. A novel structure, called effective information list, is

proposed. effective information list stores not only the
utility information about an itemset but also the
heuristic information about whether the itemset
should be pruned or not.

2. An efficient algorithm, called Efficient High Utility
Itemset Mining (EHUIM) Algorithm, is developed.
Different from previous algorithms, EHUIM
Algorithm does not generate candidate high utility
itemsets. After constructing the initial utility-record
from a mined database, EHUIM Algorithm, can mine
high utility itemsets from these utility-record. We are
using various standard and real data sets [4].

Item A B C D E F G H
Profit 5 2 1 2 3 5 1 1

Yamini P. Jawale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5390-5394

www.ijcsit.com 5390

II. BACKGROUND
A. Problem Definition

Let I={i1, i2, i3, . . . , in} be a set of items and DB
be a database composed of a utility table and a transaction
table. Each item in I has a utility value in the utility table.
Each transaction T in the transaction table has a unique
identifier(tid) and is a subset of I, in which each item is
associated with a count value. An itemset is a subset of I
and is called a k-itemset if it contains k items.

Definition 1. The external utility of item i, denoted as

ext_util(i), is the utility value of i in the utility table
of DB.

Definition 2. The internal utility of item i in transaction T,

denoted as int_util(i, T), is the count value
associated with i in T in the transaction table of DB.

Definition 3. The utility of item i in transaction T, denoted

as util(i, T), is the product of int_util(i, T) and
ext_util(i), where util(i, T) = int_util(i, T) ×
ext_util(i).
For example, in Table 2 and 3, ext_util(e) = 3,
int_util(e, T5) = 1, and util(e,T5)= int_util(e, T5) ×
ext_util(e) = 1 x 3 =3.

Definition 4. The utility of itemset X in transaction T,

denoted as util(X, T), is the sum of the utilities of all
the items in X in T in which X is contained, where

u(X, T) =

Definition 5. The utility of itemset X, denoted as u(X),is the

sum of the utilities of X in all the transactions
containing X in DB, where u(X) =

For example, in Table 2, u({ae}, T2) = u(a, T2) +
u(e, T2)= 2 × 5 + 2 × 3 = 16, and u({ae}) = u({ae},
T2) + u({ae},T5) = 16 + 14 = 30.

Definition 6. The utility of transaction T, denoted as tu(T),

is the sum of the utilities of all the items in T, where

tu(T) = ,

and the total utility of DB is the sum of the utilities
of all the transactions in DB.

B. Related Work

Many algorithms have been proposed for high utility
itemset mining but all they first produce candidate itemset
which require more time and space. Here in this algorithm
a search space from the UP Growth algorithm [5] is
minimized. A effective information list structure is used
instead of UP Tree.

III. PROPOSED METHOD
 The framework of the proposed method consist of
following steps: 1) Scan database to construct Effective
Information List. 2) Apply EHUI mining algorithm. 3)
Generate High Utility Itemsets.

A. Effective Information List Structure
In the section, we propose a utility information

record structure to maintain the utility information about a
database [7].
1) Initial Effective Information List

Initial Effective Information List storing the utility
information about a mined database can be constructed by
two scans of the database. Firstly, the transaction-weighted
utilities of all items are accumulated by a database scan. If
the transaction-weighted utility of an item is less than a
given minutil, the item is no longer considered. For the
items whose transaction-weighted utilities exceed the
minutil, they are sorted in transaction-weighted-utility-
ascending order.
2) Effective Information List of 2-Itemsets

No need for database scan, the utility information
record of 2-itemset{xy} can be constructed by the
intersection of the utility list of {x} and that of {y}. The
algorithm identifies common transactions by comparing the
tids in the two effective information list. Suppose the
lengths of the effective information lists are p and q
respectively, and then (p + q) comparisons at most are
enough for identifying common transactions, because all
tids in a effective information list are ordered. The
identification process is actually a 2-way comparison.

3) Effective Information List of k-Itemsets (k≥3)
To construct the effective information list of k-

itemset {i1 · · · i(k−1)ik}(k≥3), we can directly intersect the
utility-list of{i1 · · · i(k−2)i(k−1)}and that of {i1 · · · i(k−2)ik} as
we do to construct the utility-list of a 2-itemset.

B. EHUIM Algorithm

After constructing a Utility information record a
EHUIM Algorithm can mine all high utility itemset from
database.
1) Domain Space:

The domain space of the high utility itemset
mining problem can be represented as a combination tree.
Given a set of items I = {i1, i2, i3, . . . in} and a total order on
all items (suppose i1 < i2 < · · · < in), a combination tree
representing all itemsets can be constructed as follows.

Firstly, the root of the tree is created; secondly,
then child nodes of the root representing n 1-itemsets are
created, respectively; thirdly, for a node representing
itemset{is · · · ie} (1 ≤ s ≤ e < n), the (n−e) child nodes of
the node representing itemsets {is · · · iei(e+1) },{is · · ·
iei(e+2)}, ...,{is · · · iein} are created. The third step is done
repeatedly until all leaf nodes are created. For example,
given I = {e,c, b, a, d} and e < c < b < a < d, a combination
tree representing all itemsets of I is depicted in Figure 1.
2) pruning Strategy:

For a database with n items, exhaustive search has to
check 2n itemsets. To reduce the search space, we can
exploit the iutils and rutils in the utility-list of an itemset.
The sum of all the iutils in the utility-list of an itemset is
the utility of the itemset according to Definition 5, and thus
the itemset is high utility if the sum exceeds a given
minutil. The sum of all the iutils and rutils in the utility-list
provides EHUIM Algorithm with the key information
about whether the itemset should be pruned or not.

Yamini P. Jawale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5390-5394

www.ijcsit.com 5391

 Φ

 e c b a d

 ec eb ea ed cb ca cd ba bd ad

ecb eca ecd eba ebd ead cba cbd cad bad

ecba ecbd ecad ebad cbad

 ecbad

Lemma 1. Given the utility information record of itemset X, if the sum of all the iutils and rutils in the utility information
record is less than a given "minutil", any extension X' of X is not high utility.

Figure 1: Combination Tree

Algorithm 1: Build - Combination Algorithm

Input: P.EIL, the effective information list of itemset P;
Px.EIL, the effective information list of itemset Px;
Py.EIL, the effective information list of itemset Py.
Output: Pxy.EIL, the effective information list of itemset
Pxy.
1. Pxy.EIL = NULL;
2. for each element Ex ∈Px.EIL do
3. if ∃Ey∈Py.EIL and Ex.tid==Ey.tid then
4. if P.EIL is not empty then
5. search such element E∈P.EIL that

E.tid==Ex.tid;
6. Exy=<Ex.tid, Ex.iutil+Ey.iutil -E.iutil,

Ey.rutil>;
7. Else
8. Exy=<Ex.tid, Ex.iutil+Ey.iutil, Ey.rutil>;
9. end if

10. append Exy to Pxy.EIL;
11. end if
12. end for
13. return Pxy.EIL;

3) EHUI Mining Algorithm:
Algorithm 2 shows the pseudo-code of EHUIM

Algorithm. For each effective information list X in ULs
(the second parameter), if the sum of all the iutils in X
exceeds minutil, and then the extension associated with X
is high utility and outputted. According to Lemma 1, only
when the sum of all the iutils and rutilsin X exceeds minutil
should it be processed further. When the initial utility-lists
are constructed from a database, they are sorted and
processed in transaction-weighted utility-ascending order.
Therefore, all the utility information records in EILs are
ordered as the initial utility information record are. To
explore the search space, the algorithm intersects X and
each effective information list Y after X in EILs. Suppose
X is the effective information list of itemset Px and Y that
of itemset Py, and then Build(P.EIL, X, Y) in line 8 is to
construct the effective information list of itemset Pxy as
stated in Algorithm 1. Finally, the set of effective
information lists of all the 1-extensions of itemset Px is
recursively processed. Given a database and a minutil, after
the initial utility information record EILs are constructed,
EHUIM(∅, EILs, minutil) can mine all high utility itemsets.

Yamini P. Jawale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5390-5394

www.ijcsit.com 5392

Algorithm 2: EHUI Mining Algorithm

Input:P.EIL, the effective information list of itemset P,
initially empty; EILs, the set of utility-lists of all P’s 1-
extensions;
minutil, the minimum utility threshold.
Output: all the high utility itemsets with P as prefix.
1. for each effective information list X in EILs do
2. if SUM(X.iutils)≥minutil then
3. output the extension associated with X;
4. end if
5. if SUM(X.iutils)+SUM(X.rutils)≥minutil

then
6. exEILs = NULL;
7. for each effective information list Y after X in EILs do
8. exEILs = exEILs+Build(P.EIL, X, Y);
9. end for

10. EHUI(X, exEILs, minutil);
11. end if
12. end for

IV. EXPERIMENTAL EVALUATION
Performance of proposed algorithm is evaluated in this

section. The experiments were performed on 2.20 GHz
Core2 Duo Processor with 3GB memory. The operating
system is Windows 7. The algorithms are implemented in
Java language. Both real and standard datasets are used in
this experiment. Standard data sets are obtained from FIMI
Repository. Real datasets were generated from the actual
values. Parameter descriptions and default values of
datasets are shown in Table no 3. Educational dataset for
evaluation of feedback report of faculty member is used as
a real dataset.

Table 3: Statistics about Databases

Dataset Educational Dataset

Size 26kb

Transactions 500

Items 10

Avg Length 10

A. Performance comparison on Educational
Feedback data sets

Running Time
For almost all databases and minutils, EHUI performs

the best. In Figure 3, EHUI is even an order of magnitude
faster than UPGrowth and UPGrowth+. For the Educational
Feedback Dataset, when minutils are 50%, 60%, and 70%,
the running time required for EHUI are 40mSec. So
running time for EHUI is always less compare to UP
Growth and UP Growth+ Algorithms.

26.5

27

27.5

28

28.5

29

29.5

30

30.5

31

31.5

50 60 70 80 90 100

R
u
n
n
in
g
 T
im

e

Minimum Utility

Running Time required for Feedback
dataset

UPG UPG+ EHUI

Figure 3: Time for Educational Feedback Dataset

Memory Consumption

Generally, the memory consumption of the
algorithms is proportional to the number of candidate
itemsets they generate. For example, for database Chess,
UP Growth generates 623, UP Growth+ generates 551 and
that of IHUP generates 30 candidate itemsets and consumes
17.60MB, 21.81MB, and 16.02MB of memory
respectively[6]. Similar case is there for Educational
Feedback Dataset. EHUI require near about similar space
compare to UPGrowth and in some cases of UPGrowth+
algorithm.

0

1

2

3

4

5

10 20 30 40 50 60

M
e
m
o
ry
 s
p
ac
e

Minimum Utility

Memory space required for Feedback
dataset

UPG UPG+ EHUI

Figure 6: Memory Space for Educational Feedback Dataset

Itemsets Found
Higher the number of candidate itemsets in a

algorithm, lower is the performance. EHUI mining generate
similar number of itemsets compare to UPGrowth and
UPGrowth+.

Yamini P. Jawale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5390-5394

www.ijcsit.com 5393

V. CONCLUSION
 In this paper, we have proposed a novel data
structure, effective information list, and developed an
efficient algorithm, EHUI, for high utility itemset mining.
Effective information list provide not only utility
information about itemsets but also important pruning
information for EHUI. We have used Educational real time
and standard datasets. Previous algorithms have to process
a very large number of candidate itemsets during their
mining processes. However, most candidate itemsets are
not high utility and are discarded finally. EHUI Algorithm
can mine high utility itemsets without candidate generation,
so that complexity of UPGrowth and UPGrowth+ is
reduced as it require less time and space, which avoids the
costly generation and utility computation of candidates.

REFERENCES
[1] Jyothi Pillai, O.P.Vyas “Overview of Itemset Utility Mining and its

Applications” IJCA(0975 – 8887) Volume 5– No.11, August 2010.
[2] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent pattern mining:

Current status and future directions. Data Mining and Knowledge
Discovery, 15(1):55–86, 2007.

[3] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, and Y.-K.Lee. Efficient
tree structures for high utility patternmining in incremental
databases. IEEE Transactions onKnowledge and Data Engineering,
21(12):1708–1721,2009.

[4] Frequent Itemset Mining Implementations Repository,
http://fimi.cs.helsinki.fi/, 2013.

[5] Vincent S. Tseng, Bai-En Shie, Cheng Wei Wu, and Philip S. Yu,
Fellow, “Efficient Algorithms for Mining High Utility Itemsets from
Transactional Databases” IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 8,
AUGUST 2013.

[6] Prashant V. Barhate, S. R. Chaudhari, P. C. Gill, “Efficient High
Utility Itemset Mining using Utility Information Record”
International Journal of Computer Applications (0975 – 8887)
Volume 120 – No.4, June 2015.

[7] Mengchi Liu, Junfeng Qu, “Mining High Utility Itemsets without
Candidate Generation” CIKM’12, October 29–November 2, 2012

Yamini P. Jawale et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5390-5394

www.ijcsit.com 5394

